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Abstract In this paper, we consider a two-dimensional reduced form contagion model with
regime-switching interacting default intensities. The model assumes that the intensities of
the default times are driven by macro-economy described by a homogenous Markov chain
and that the default of one firm may trigger a positive jump, associated with the state of
Markov chain, in the default intensity of the other firm. The intensities before the default of
the other firm are modeled by a two-dimensional regime-switching shot noise process with
common shocks. By using the idea of “change of measure” and some closed-form formulas
for the joint conditional Laplace transforms of the regime-switching shot noise processes
and the integrated regime-switching shot noise processes, we derive the two-dimensional
conditional and unconditional joint distributions of the default times. Based on these results,
we can express the single-name credit default swap (CDS) spread, the first and second-to-
default CDS spreads on two underlyings in terms of fundamental matrix solutions of linear,
matrix-valued, ordinary differential equations.
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1 Introduction

Portfolio credit derivatives have attracted a lot of attention over the last decade in the credit
risk theory. The challenge in the valuation of such financial derivatives is the modeling of
the default dependence among them. Reduced form models are some of the most important
ones dealing with correlated defaults. There are two major types of reduced form models for
describing dependent default risk, namely bottom-up models and top-down models. In the
former approach, one focuses on modeling default intensities of individual reference entities
and their aggregation to form a portfolio default intensity. Some works on bottom-up models
include Duffie and Gârleanu (2001), Jarrow and Yu (2001) and Giesecke and Goldberg
(2004). In the latter approach, one concerns modeling default at portfolio level. A default
intensity for the whole portfolio is modeled without reference to the constituent names.
Some procedures such as random thinning can be used to recover the default intensities
of the individual entities. Some works on top-down models include Brigo et al. (2007),
Giesecke et al. (2011a) and Ding et al. (2009). We focus on bottom-up models.

To introduce default dependence under bottom-up models, one may set the default inten-
sities of the firms in the portfolio to be driven by a common set of macroeconomic factors.
Therefore, conditional on the realization of the macro-economic state variables, the default
times are mutually conditionally independent. Default contagion is another approach to
model the default correlation. The contagion models study the direct interaction of firms
in which the default probability of one firm may change upon defaults of some other firms
in the portfolio. They can well capture the clustering phenomena in correlated defaults and
have been studied quite extensively in recent years, see for example, Kusuoka (1999), Davis
and Lo (2001), Jarrow and Yu (2001), Ma and Yun (2010), and Yu (2007). Solving a con-
tagion model faces an obstacle of looping default problem. Collin-Dufresne et al. (2004)
propose a “change of measure” technique to deal with contagion models. This method is
further extended by Giesecke and Zhu (2013), who develop an equivalent change of prob-
ability measure that includes the absolutely continuous measure change of Collin-Dufresne
et al. (2004) as a limiting case. This paper aims to propose a model for correlated defaults
which includes the above two mechanisms.

In finance, a point process with its intensity dependent on the point process itself or
dependent on exogenous factors could provide a more effective model to capture the con-
tagion phenomenon. See for example, Errais et al. (2010) analyze a family of multivariate
affine point process models, in which the components of a multivariate affine point pro-
cess are self- and cross-exciting, for applications in portfolio credit risk. The self-exciting
specification can capture the feedback effects of events observed from real financial data.
Another example of an intensity based model that incorporates feedback effects is in Ding
et al. (2009), who propose a class of self-exciting loss processes that are obtained by
time-changing a birth process. Errais et al. (2010) and Ding et al. (2009) mainly consider
self-exciting processes. As pointed out by Errais et al. (2010), whether an affine pro-
cess has the self-exciting property depends on the relation between the affine process and
its intensity. The self-exciting property holds if the intensity depends on the affine pro-
cess. Dassios and Jang (2003) consider an affine process having no self-exciting property,
since the intensity they propose is only dependent on exogenous factors described by the
shot-noise process. As explained by Dassios and Jang (2003), the shot noise process mea-
sures the frequency, magnitude and time period needed to go back to the previous level of
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intensity immediately after shock events occur. Recently, Gaspar and Schmidt (2010) show
that an affine model augmented with shot-noise effects gives a superior fit to historical
data as well as a better fit in calibration. However, the 2007–2010 global financial crisis
reveals that default risk is much influenced by the business cycles or macro-economy. The
above-mentioned models do not incorporate the change in regimes of credit markets. Intu-
itively, default risk typically declines during economic expansion because strong earnings
keep overall defaults rates low. Default risk increases during economic recession because
earnings deteriorate, making it more difficult to repay loans or make bond payments. Credit
derivatives are long term instruments and thus it is very important to develop more appro-
priate models for valuation and risk management of credit products, which can take into
account changes of market regimes or environments due to the crisis.

Markov regime-switching models have been used in different branches in modern finan-
cial economics, see for example, Elliott et al. (2005), Buffington and Elliott (2002),
Hackbarth et al. (2006), Siu et al. (2008) and Siu (2010). In a regime switching model, the
market is assumed to be in different states depending on the state of the macro-economy.
Regime shift from one economic state to another may occur due to various financial fac-
tors like changes in business conditions, management decisions and other macro-economic
conditions. Many papers have empirically verified the advantages of using the Markov
regime-switching model. In the bond market, the switching behavior of market interest rate
has been well documented in the empirical finance literature. For example, Ang and Bekaert
(2002a, b) use interest rate data from the United States, Germany, and the United Kingdom
to show empirically the switching behavior of market interest rates is attributed to business
cycles. In the stock market, by using monthly returns data from the Standard and Poor’s 500
and the Toronto Stock Exchange 300 indices, Hardy (2001) finds that the regime-switching
lognormal model fits to the monthly returns data much better than other econometric mod-
els, such as the independent lognormal model and the ARCH type models. In the credit
market, empirical studies point to the existence of different regimes in the default risk val-
uation, see for example, Davies (2004, 2008) and Giesecke et al. (2011b). Di Graziano and
Rogers (2009) present a conditionally independent model, where defaults of different firms
are driven by a common continuous-time Markov chain representing the state of health of
the economy.

In this paper, motivated by Dassios and Jang (2003), Yu (2007), Di Graziano and Rogers
(2009) and others, we propose a two-dimensional contagion model under a Markov, regime-
switching environment, where the intensities are driven by a common continuous-time
Markov chain representing the state of the macro-economy as well as the default of the other
firm, and the intensities before the default of the other firm are assumed to follow regime-
switching shot noise processes. Therefore, the default dependence structure we construct
includes both mechanisms: conditional on common macro-economy and default contagion.
As explained in Dassios and Jang (2003), the intensity changes upon the arrival of the shock
events when the intensity is modeled by a regime-switching shot noise process. Intuitively,
the default intensities may be both affected by some common shock events. Following
Lindskog and McNeil (2003), we propose a two-dimensional regime-switching shot noise
process with common shocks to model the intensities before the default of the other firm.

The aim of this paper is to provide a model for correlated defaults. Under the pro-
posed model, we will derive the joint distribution of the default times, the single-name CDS
spreads with and without counterparty risk, the first and second-to-default CDS spreads
on two underlyings. The paper is organized as follows: Section 2 introduces the default
dependence structure under a Markov, regime-switching environment and presents some
preliminary results. In Section 3, we use the idea of “change of measure” proposed by
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Collin-Dufresne et al. (2004) and further studied by Giesecke and Zhu (2013) to derive
the two-dimensional conditional and unconditional joint distributions of the default times.
Based on the results, we give the formulas for the single-name CDS spreads with and with-
out counterparty risk, the first and second-to-default CDS spreads on two underlyings in
Section 4. Section 5 performs some numerical calculations. Section 6 concludes.

2 Modeling Default Dependence Under a Markov Environment

In this section, we propose a two-dimensional contagion model under a Markov environ-
ment within the reduced form framework. Consider a continuous-time model with a finite
time horizon [0, T ] with T < ∞. Let {�, �, {�t }0≤t≤T , P } be a filtered complete proba-
bility space, where P is the risk neutral measure and {�t }0≤t≤T is a filtration satisfying the
usual conditions of right continuity and completeness. Throughout the paper, it is assumed
that all random variables and stochastic processes are well defined on this probability space
and �T −measurable.

Let {Xt }t≥0 be a homogenous continuous-time irreducible Markov chain with genera-
tor Q = (qij )i,j=1,2,··· ,N , generating a filtration �X

t . As in Buffington and Elliott (2002),
the state space of X can be taken to be, without loss of generality, the set of unit vectors
{e1, e2, · · · , eN }, ei = (0, · · · , 0, 1, 0, · · · , 0)∗ ∈ RN, where ∗ denotes the transpose of a
vector or a matrix. Elliott et al. (1994) provide the following semi-martingale decomposition
for {Xt }t≥0:

Xt = X0 +
∫ t

0
Q∗Xsds + Mt, (2.1)

where {Mt }t≥0 is an RN -valued martingale with respect to the filtration generated by
{Xt }t≥0.

Let 〈., .〉 denote a scalar product in RN, that is, for any x, y ∈ RN, 〈x, y〉 = ∑N
i=1 xiyi .

Denote by D(t1, t2) the stochastic factor giving the discounted value of one at time t1
due at time t2. Assume that the discount factor in this paper is given by D(0, t) =
exp{−∫ t

0 rsds}, where the stochastic interest rate is modeled by rt = 〈r,Xt 〉, for a vector
r = (r1, r2, · · · , rN)∗ ∈ RN with ri > 0 for each i = 1, 2, · · · , N.

Now we model the default dependence structure under a Markov, regime-switching
environment. Denote by τ1, τ2 the default times of two firms. Define τi as

τi = inf

{
t > 0 :

∫ t

0
λi

sds ≥ Ei

}
, i = 1, 2, (2.2)

where E1 and E2 are two independent unit exponential random variables, and for each
i = 1, 2, λi

t is the nonnegative �t predictable intensity of τi satisfying E[∫ t

0 λi
sds] < ∞, for

any t < +∞. Assume that the default intensities of two firms are expressed as
{

λ1
t = L1

t + a1
τ2

e−δ1(t−τ2)1{τ2≤t},
λ2

t = L2
t + a2

τ1
e−δ2(t−τ1)1{τ1≤t},

(2.3)

where a
j
τi

= 〈aj ,Xτi
〉 for a constant vector aj = (aj1, · · · , ajN)∗ with aji > 0 for each

j = 1, 2, i = 1, · · · ,N, and Li
t is a regime-switching shot noise process given by

Li
t = Li

0e
−δi t +

∫ t

0
e−δi (t−s)dJ i

s , i = 1, 2. (2.4)
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Here δ1, δ2 are positive constants; Li
0 = 〈Li

0, X0〉, where Li
0 = (Li1

0 , · · · , LiN
0 )∗ with

L
ij
0 > 0 for each i = 1, 2, j = 1, 2, · · · , N; and J i

t = ∑Ni(t)+N3(t)
j=1 Y i

j , where N1(t),N2(t)

and N3(t) are mutually conditionally independent regime-switching Poisson processes with
intensities given by ρi(s) = 〈ρi , Xs〉 for constant vectors ρi = (ρ1

i , · · · , ρN
i )∗, i = 1, 2, 3

with ρ
j
i > 0, for each i = 1, 2, 3, j = 1, · · · ,N; Assume that given the path of the

Markov chain X, the two sequences {Y 1
1 , Y 1

2 , · · · }, {Y 2
1 , Y 2

2 , · · · } are independent and inde-
pendent of N1(t),N2(t),N3(t). Furthermore, given the path of the Markov chain X, we
assume that for each i = 1, 2, the jump sizes Y i

j , j = 1, 2, · · · are mutually indepen-

dent and identically distributed with a common conditional density f i
t concentrated on

(0,∞), where f i
t (.) = 〈fi (.),Xt 〉, with fi (.) = (f i1(.), · · · , f iN (.))∗. If there is no regime-

switching, then the dependence structure between J 1
t and J 2

t is so-called “common shock
structure” discussed by Cossette and Marceau (2000). Therefore, the process (L1

t , L
2
t ) is a

two-dimensional regime-switching shot noise process with common jumps.
Note that, from Eqs. 2.3 and 2.4, the default intensities of the two firms satisfy the SDEs{

dλ1
t = −δ1λ1

t dt + dJ 1
t + a1

t dN
2
t ,

dλ2
t = −δ2λ2

t dt + dJ 2
t + a2

t dN
1
t ,

(2.5)

where N
i

t = 1{τi≤t}, i = 1, 2. Comparing with the affine process studied by Errais et al.
(2010), we incorporate the changes of market regimes or environments due to the crisis

into the the dynamics of stochastic intensities. Therefore, the process (N
1
t , N

2
t )

∗, driven by
a two-dimensional regime-switching affine jump process (λ1

t , λ2
t )

∗, is a two-dimensional
regime-switching affine process. Although Errais et al. (2010) present a formula for the
transform of a general affine point process, Although Errais et al. (2010) present a formula
for the transform of a general affine point process, it can not be applied to the Markov,
regime-switching intensity model we propose. In this paper, we shall derive a formula for
the Laplace transform of Li

t . Then by using the idea of “change of measure,” we can derive
the default probabilities and the CDS spread.

This paper introduces a new point process with regime switching by generalising an
affine process studied in Errais et al. (2010). Our process includes both self-excited and
externally excited jumps. Note that, the default dependence modeled by Eq. 2.3 stems from
three sources. First, the intensities of the two firms are both affected by macro-economic
factors, so we have inter-dependence between their defaults through a Markov chain, which
describes the macro-economy. This dependence structure allows the default intensities of
the two firms to change simultaneously over time depending on the state of the underlying
Markov chain. Second, default dependence arises from common jumps in the intensities
modeled by regime-switching compound Poisson process. Finally, inter-dependent default
structure arises from default contagion. Broadly speaking, there are two kinds of default
contagion, namely, counterparty risk and information effect. If there exist direct business
links between the two firms, such as an intense business relation or a strong borrower-lender
relationship, then these direct links lead to default contagion and counterparty risk. So the
conditional default probability of non-defaulted firm given the additional information that
some other firm has defaulted is higher than the unconditional default probability, and the
credit spread of the bond issued by non-defaulted firm increases given the news that some
other firm has defaulted. In mathematical terms default contagion and counterparty risk
lead to an upward jumps in the default intensity of the non-defaulted firm at the default
time of some other firm. However, there is another kind of default contagion, information
effect. That is, changes in the conditional default probability of the non-defaulted firm can
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be caused by information effects: investors might revise their estimate of the financial health
of the non-defaulted firm in light of the news that a particular firm has defaulted. See for
example, the accounting scandal of the WorldCom led to rising credit spreads for many other
corporations. Furthermore, our model can explain the following important issues: credit
spreads may change without default occurring and credit spreads exhibit both a jump and a
continuous component.

Remark 2.1 If the jump amounts aj , j = 1, 2 are set to be 0 and J 1
t , J 2

t are assumed to
be independent given X, then the default times are conditionally independent. Therefore,
Eq. 2.3 becomes to be a conditionally independent default model.

3 Conditional Joint Distribution and Laplace Transform

In this section, we follow the idea of change of measure to derive the two-dimensional
conditional distributions of the default times, and we use a martingale method to obtain the
joint Laplace transform of the regime-switching shot noise processes.

Denote the filtration by

�t = �X
t ∨�L

t ∨ �1
t ∨ �2

t ,

where �L
t = �L1

t ∨ �L2

t , and �i
t = σ

(
Hi

u : 0 ≤ u ≤ t
)
, with Hi

u = 1{τi≤u},�Li

t =
σ

(
Li

u : 0 ≤ u ≤ t
)
, i = 1, 2.

For the computation of the joint distribution of τ1 and τ2, the main obstacle is the looping
structure Eq. 2.3 of the intensities. Following Collin-Dufresne et al. (2004), we define the
following two survival measures

dP i

dP
|�t = 1{τi>t} exp

(∫ t

0
λi

sds

)
.= ηi

t , i = 1, 2, (3.1)

where P i is a firm-specific (firm i) probability measure which is absolutely continuous with
respect to P on the stochastic interval [0, τi ). From Lemma A.2 in Collin-Dufresne et al.

(2004), we have 1{τi>t} exp
(∫ t

0 λi
sds

)
is a uniformly integrable P -martingale with respect to

�t and is almost surely strictly positive on [0, τi) and almost surely equal to zero on [τi ,∞).

To proceed the calculations under the measure P i , we enlarge the filtration to �i =
(
�i

t

)
t≥0

as the completion of � = (�t )t≥0 by the null sets of the probability measure P i. Let Ei[.]
denote the expectation taken under the measure P i . For notational convenience, we still use

� instead of �1
or �2

used without changing the results. The next results show that, under
P i, the Markov chain Xt and the jump process Li

t have the same distributions as those under
P.

Proposition 3.1 The process

Mt = Xt − X0 −
∫ t

0
Q∗Xsds,

is an RN -valued martingale under P i.

Proof The proof is presented in the Appendix.
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Proposition 3.2 For i = 1, 2, the processes

Ni(t) = Ni(t) −
∫ t

0
ρi(s)ds,

and

Mi(t) = J i
t −

∫ t

0

∫ ∞

0
(ρi(s) + ρ3(s))yfs(y)dyds,

are both RN -valued martingales under P i.

Proof The proof is presented in the Appendix.

Therefore, from Propositions 3.1 and 3.2, we can conclude that the distributions of Li
t ,Xt

under the measure P i are the same as those under P.

The next two results give the conditional joint distributions of the default times by using
the change of measure technique.

Proposition 3.3 For 0 < s ≤ T ,

P
(
τ1 > s, τ2 > s

∣∣∣�X
s ∨�L

s

)
= e−∫ s

0 (L1
u+L2

u)du; (3.2)

for 0 ≤ t < s ≤ T ,

P
(
τ1 > s, t < τ2 ≤ s

∣∣∣�X
s ∨�L

s

)
=

∫ s

t

L2
ve

−∫ v
0 L2

udu−∫ s
0 L1

udu−a1
vξ 1(v,s)dv; (3.3)

and

P
(
τ2 > s, t < τ1 ≤ s

∣∣∣�X
s ∨�L

s

)
=

∫ s

t

L1
ve

−∫ v
0 L1

udu−∫ s
0 L2

udu−a2
vξ 2(v,s)dv, (3.4)

where ξ i(v, s) = (1 − exp(−δi(s − v)))/δi, i = 1, 2.

Proof The proof is presented in the Appendix.

Now we turn to deriving the Laplace transform of the regime-switching shot noise
processes which plays an important role in the valuation of the CDS spreads.

For ci ≥ 0 and di > 0, i = 1, 2, let

V (t, T ) = E

⎡
⎢⎣e

−∫ T
t

(
2∑

i=1
ciLi

s+rs

)
ds−

2∑
i=1

diLi
T

XT

∣∣∣�X
t ∨�L

t

⎤
⎥⎦ ,

where Li
t is modeled by Eq. 2.4. Note that Li

t > 0 for i = 1, 2. Consequently, V (t, T ) is a
bounded vector. Since

(
Xt, L1

t , L2
t

)∗
is a three-dimensional Markov process with respect to

�X
t ∨�L

t , we have

V (t, T ) = E

⎡
⎢⎣e

−∫ T
t

(
2∑

i=1
ciLi

s+rs

)
ds−

2∑
i=1

diLi
T

XT

∣∣∣L1
t , L

2
t , Xt

⎤
⎥⎦ =: θ

(
t, T , L1

t , L
2
t , Xt

)
.
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In particular, given that Li
t = li for i = 1, 2 and Xt = x,

θ(t, T , l1, l2, x) = E

⎡
⎢⎣e

−∫ T
t

(
2∑

i=1
ciLi

s+rs

)
ds−

2∑
i=1

diLi
T

XT

∣∣∣L1
t = l1, L2

t = l2,Xt = x

⎤
⎥⎦ .

Write

θi = θ(t, T , l1, l2, ei), i = 1, 2, · · · ,N, θ = (θ1, θ2, · · · , θN)∗ ∈ RN.

Assume that θ(t, T , l1, l2, x) is continuously differentiable with respect to t and li . Denote
the corresponding derivatives by ∂θ/∂t and ∂θ/∂li for i = 1, 2. The following result gives
the explicit expression for θ(t, T ,L1

t , L2
t , Xt ).

Proposition 3.4 For ci ≥ 0 and di > 0, i = 1, 2, we have

V (t, T ) = e
−

2∑
i=1

(ci ξ i (t,T )+die−δi (T −t))Li
t 〈A1(c

1, c2, d1, d2, t, T ),Xt 〉, (3.5)

where

ξ i(t, T ) = (1 − e−δi(T −t))/δi , i = 1, 2,

and the matrix A1(c
1, c2, d1, d2, t, T ) solves

∂A1

∂t
+ (Q − diag(r − Ft (c

1, c2, d1, d2))A1(c
1, c2, d1, d2, t, T ) = 0,

with boundary condition

A1(c
1, c2, d1, d2, T , T ) = I.

Here, I is an N × N identity matrix and Fs is an N-dimensional vector with the j th
component given by

F
j
s (c1, c2, d1, d2) =

2∑
i=1

ρ
j
i

(
g

ij
s (ci, di) − 1

)
+ ρ

j

3

(
2∏

i=1

g
ij
s (ci, di) − 1

)
,

and

g
ij
s (ci, di) =

∫ ∞

0
e−(ciξ i (s,T )+di e−δi (T −s))xf ij (x)dx, i = 1, 2, j = 1, · · · ,N.

And

E

⎡
⎢⎣e

−∫ T
t

(
2∑

i=1
ciLi

s+rs

)
ds−

2∑
i=1

diLi
T

∣∣∣�X
t ∨�L

t

⎤
⎥⎦

= e
−

2∑
i=1

(ci ξ i (t,T )+die−δi (T −t))Li
t 〈A1(c

1, c2, d1, d2, t, T )1,Xt 〉. (3.6)
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Proof We use the martingale approach to derive Eq. 3.5. Consider the function V (t, T ) =
Utθ(t, T , L1

t , L
2
t , Xt ), where Ut = exp

(
−∫ t

0

(
2∑

i=1
ciLi

s + rs

)
ds

)
. Applying Itô’s differ-

entiation rule to V (t, T ) yields

dV (t, T ) = Ut

(
∂

∂t
−

m∑
i=1

δiLi
t

∂

∂li
−

(
2∑

i=1

ciLi
t + rt

))
θ(t, T , L1

t , L
2
t , Xt )dt

+ Ut((θ(t, T , L1
t , L2

t , Xt ) − θ(t, T , L1
t− , L2

t , Xt ))dN1
t

+ Ut((θ(t, T , L1
t , L2

t , Xt ) − θ(t, T , L1
t , L2

t− ,Xt ))dN2
t

+ Ut(θ(t, T , L1
t , L

2
t , Xt ) − θ(t, T , L1

t− , L2
t− ,Xt ))dN3

t

+ Ut 〈θ , Q∗Xt 〉dt + Ut 〈θ , dMt〉.
Note that V (t, T ) is a bounded martingale. Consequently, we have

(
∂

∂t
−

2∑
i=1

δi li
∂

∂λi
−

(
m∑

i=1

ciλi + 〈r, x〉
))

θ(t, T , l1, l2, x) + 〈θ ,Q∗x〉

+ 〈ρ1, x〉E[(θ(t, T , l1 + Y 1, l2, x) − θ(t, T , l1, l2, x))]
+ 〈ρ2, x〉E[(θ(t, T , l1, l2 + Y 2, x) − θ(t, T , l1, l2, x))]
+ 〈ρ3, x〉E[(θ(t, T , l1 + Y 1, l2 + Y 2, x) − θ(t, T , l1, l2, x))] = 0. (3.7)

Due to the affine structure of Li
t for i = 1, 2, motivated by Duffie et al. (2003), we try the

solution

θ(t, T , l1, l2, x) = e

2∑
i=1

Bi(t,T )li

C(t, T , x), (3.8)

where the terminal conditions are given by

Bi(T , T ) = −di, C(T , T , x) = x.

Write C(t, T ) = (C(t, T , e1), · · · , C(t, T , eN))∗ ∈ RN. Substituting the solution for θ

given by Eq. 3.8 into 3.7 gives

C(t, T , x)

2∑
i=1

li
(

∂Bi

∂t
− δiBi(t, T ) − ci

)
+ ∂C

∂t
− 〈r, x〉C(t, T , x)

+ 〈C(t, T ),Q∗x〉 + C(t, T , x)

2∑
i=1

〈ρi, x〉
∫ ∞

0
(eBi(t,T )y − 1)〈fi (y), x〉dy

+ C(t, T , x)〈ρ3, x〉
(

2∏
i=1

∫ ∞

0
eBi(t,T )y〈f3(y), x〉dy − 1

)
= 0. (3.9)

Since Eq. 3.9 holds for all li and x, we have

∂Bi

∂t
− δiBi(t, T ) − ci = 0, Bi(T , T ) = −di, i = 1, 2,

and
∂C
∂t

+ (Q + diag(Ft − r))C(t, T ) = 0, C(T , T ) = I,



Methodol Comput Appl Probab

where Ft is an N-dimensional vector with the j th component given by

F
j

t =
2∑

i=1

ρ
j
i

∫ ∞

0
(eBi(t,T )y − 1)f ij (y)dy + ρ3

0

(
2∏

i=1

∫ ∞

0
eBi(t,T )yf ij (y)dy − 1

)
.

By solving the above equations, we complete the proof of Eq. 3.5.

Equation 3.6 holds since E

⎡
⎢⎣e

−∫ T
t

(
2∑

i=1
ciLi

s+rs

)
ds−

2∑
i=1

diLi
T |�X

t ∨�L
t

⎤
⎥⎦ = 〈V (t, T ), 1〉.

Corollary 3.1 For ci ≥ 0 and di > 0, i = 1, 2 and for each k = 1, 2, we have

E

⎡
⎢⎣Lk

T e
−∫ T

t

(
2∑

i=1
ciLi

s+rs

)
ds−

2∑
i=1

diLi
T

XT

∣∣∣�X
t ∨�L

t

⎤
⎥⎦ = e

−
2∑

i=1
(ci ξ i (t,T )+di e−δi (T −t))Li

t

× 〈e−δk(T −t)Lk
t A1(c

1, c2, d1, d2, t, T ) − Ak
2(c

1, c2, d1, d2, t, T ),Xt 〉, (3.10)

and

E

⎡
⎢⎣L1

T L2
T e

−∫ T
t

(
2∑

i=1
ciLi

s+rs

)
ds−

2∑
i=1

diLi
T

XT

∣∣∣�X
t ∨�L

t

⎤
⎥⎦ = e

−
2∑

i=1
(ci ξ i (t,T )+di e−δi (T −t))Li

t

× 〈e−(δ1+δ2)(T −t)L1
t L

2
t A1(c

1, c2, d1, d2, t, T ) − e−δ1(T −t)L1
t A2

2(c
1, c2, d1, d2, t, T )

− e−δ2(T −t)L2
t A1

2(c
1, c2, d1, d2, t, T ) + A12

3 (c1, c2, d1, d2, t, T ),Xt 〉, (3.11)

where

Al
2(c

1, c2, d1, d2, t, T ) = ∂A1(c
1, c2, d1, d2, t, T )

∂dl
, l = 1, 2,

and

A12
3 (c1, c2, d1, d2, t, T ) = ∂2A1(c

1, c2, d1, d2, t, T )

∂d1∂d2
,

with A1(c
1, c2, d1, d2, t, T ) defined in Proposition 3.4.

Proof If we differentiate both sides of Eq. 3.5 with respect to dk, then we can obtain
Eq. 3.10. Also, Eq. 3.11 can be obtained by taking partial derivatives with respect to d1 and
then d2 on both sides of Eq. 3.5.

For notational convenience, define

Ai
2(c

1, c2, 0, d2, t, T ) = lim
d1→0

Ai
2(c

1, c2, d1, d2, t, T ),

Ai
2(c

1, c2, d1, 0, t, T ) = lim
d2→0

Ai
2(c

1, c2, d1, d2, t, T ),

Ai
2(c

1, c2, 0, 0, t, T ) = lim
d1,d2→0

Ai
2(c

1, c2, d1, d2, t, T ),

A12
3 (c1, c2, 0, d2, t, T ) = lim

d1→0
A12

3 (c1, c2, d1, d2, t, T ),

A12
3 (c1, c2, d1, 0, t, T ) = lim

d2→0
A12

3 (c1, c2, d1, d2, t, T ),

where Ai
2(c

1, c2, d1, d2, t, T ) and A12
3 (c1, c2, d1, d2, t, T ) are defined in Corollary 3.1.
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4 Credit Default Swaps

In recent years, the credit derivatives market has grown explosively and credit derivatives
have become popular tools for hedging credit risk of financial institutions. A credit deriva-
tive may be reference to a single reference entity, or a portfolio of reference entities. In this
section, we shall compute the fair spreads of a single-name credit default swap, the first and
second-to-default basket swaps on two underlyings.

4.1 Single-Name Credit Default Swap

In this subsection, we shall compute the fair credit default swap premiums with and without
default risk of the protection seller, respectively.

A single name CDS is an insurance contract on the default of a single reference credit
between a protection buyer and a protection seller. We assume the protection buyer is
default-free. Consider a CDS contract with notional value one, continuous spread rate pay-
ments and maturity T . Indices 1, 2 refer to quantities related to the protection seller and the
reference entity. Denote by τ1 and τ2 the default times of the protection seller and the refer-
ence entity, respectively, denote by R the recovery of the reference entity which is supposed
to be a constant. Assume that the default intensities of τ1 and τ2 are given by Eq. 2.3. Let
κ and κ1 be the fair spreads of a CDS contract without and with the default risk of the pro-
tection seller, respectively. In the literature, much research has been carried out to study the
impact of counterparty risk on CDS valuation. In this paper, the impact on the CDS spread
rate in the presence of the counterparty risk is measured by κ − κ1, which has also been
studied in Leung and Kwok (2009).

We first describe the cash flows of a CDS without counterparty. For the default leg, the
protection seller covers the credit losses 1 − R as soon as the reference entity has defaulted.
For the premium leg, the protection buyer pays κ to the seller continuously until maturity or
until the reference entity defaults before maturity. Then, the fair spread of the CDS without
counterparty risk is determined so that the discounted payoff of the two legs are equal when
the contract is initiated at time 0. That is, the spread κ should satisfy

κ

∫ T

0
E

[
1{τ2>u}D(0, u)

]
du = (1 − R)E

[
D(0, τ2)1{τ2≤T }

]
.

Hence,

κ = (1 − R)E
[
D(0, τ2)1{τ2≤T }

]
∫ T

0 E
[
1{τ2>u}D(0, u)

]
du

. (4.1)

We now turn to the cash flows of a CDS with counterparty risk. For the default leg, if
the reference entity defaults before maturity while the protection seller still survives, then
the protection seller covers the credit losses 1 − R. For simplicity, we assume that if the
protection seller defaults first before maturity, then the protection buyer gets nothing. For
the premium leg, the protection buyer pays κ1 to the seller continuously until maturity or
until any of names 1, 2 defaults before maturity. Again, the fair spread of the CDS with
counterparty risk is determined so that the discounted payoff of the two legs are equal when
the contract is initiated at time 0. So, the spread κ1 should satisfy

κ1

∫ T

0
E

[
1{τ1∧τ2>u}D(0, u)

]
du = (1 − R)E

[
D(0, τ2)1{τ2≤T,τ2<τ1}

]
.
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So,

κ1 = (1 − R)E
[
D(0, τ2)1{τ2≤T,τ2<τ1}

]
∫ T

0 E
[
1{τ1∧τ2>u}D(0, u)

]
du

. (4.2)

Proposition 4.1 The fair spread of the CDS without counterparty risk is given by

κ = (1 − R)
∫ T

0 (h3(t) + h4(t))dt∫ T

0 (h1(t) + h2(t))dt
, (4.3)

where

h1(t) = e−ξ 1(0,t)L1
0−ξ 2(0,t)L2

0 〈A1(1, 1, 0, 0, 0, t)1,X0〉,

h2(t) =
∫ t

0
e−ξ 1(0,v)L1

0−ξ 2(0,t)L2
0 〈(e−δ1vL1

0A1(1, 1, 0, ξ 2(v, t), 0, v)

−A1
2(1, 1, 0, ξ 2(v, t), 0, v))U2(v, t)(A1(0, 1, 0, 0, v, t)1),X0〉dv,

h3(t) =
∫ t

0
e−ξ 1(0,v)L1

0−ξ 2(0,t)L2
0(〈(e−(δ1+δ2)vL1

0L
2
0A1(1, 1, 0, ξ 2(v, t), 0, v)

−e−δ1vL1
0A2

2(1, 1, 0, ξ 2(v, t), 0, v) − e−δ2vL2
0A1

2(1, 1, 0, ξ 2(v, t), 0, v)

+A12
3 (1, 1, 0, ξ 2(v, t), 0, v))e−δ2(t−v)U2(v, t)(A1(0, 1, 0, 0, v, t)1),X0〉

+〈(e−δ1vL1
0A1(1, 1, 0, ξ 2(v, t), 0, v) − A1

2(1, 1, 0, ξ 2(v, t), 0, v))

×(e−δ2(t−v)C2(v, t)(A1(0, 1, 0, 0, v, t)1)−U2(v, t)A2
2(0, 1, 0, 0, v, t)1),X0〉)dv,

and

h4(t) = e−ξ 1(0,t)L1
0−ξ 2(0,t)L2

0 〈(e−δ2tL2
0A1(1, 1, 0, 0, 0, t) − A2

2(1, 1, 0, 0, 0, t))1,X0〉,

with C2(v, t) = diag(a2)U2(v, t) and U2(v, t) = diag((e−a21ξ 2(v,s), · · · , e−a2Nξ 2(v,s))∗).

Proof The expected discounted spread payment is

κE

[∫ T

0
e−∫ t

0 rsds1{τ2>t}dt

]
= κE

[∫ T

0
e−∫ t

0 rsdsE
[
1{τ2>t}|�X

t ∨ �L
t

]
dt

]

= κE

[∫ T

0

∫ t

0
L1

ve
−∫ t

0 rsds−∫ v
0 L1

udu−∫ t
0 L2

udu−a2
v ξ 2(v,t)dvdt

]

+ κE

[∫ T

0
e−∫ t

0 (rs+L1
s +L2

s )dsdt

]
.= κ(I1 + I2),

where the second equality follows from Proposition 3.3. Then by using Proposition 3.4, we
have

I2 =
∫ T

0
e−ξ 1(0,t)L1

0−ξ 2(0,t)L2
0〈A1(1, 1, 0, 0, 0, t)1,X0〉dt. (4.4)
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In order to compute I1, we use the “tower” property of conditional expectations and obatin

I1 =
∫ T

0

∫ t

0
E

[
L1

ve
−∫ v

0

(
L2

u+L1
u+ru

)
du−a2

vξ 2(v,t)E
[
e−∫ t

v

(
ru+L2

u

)
du|�X

t ∨�L
v

]]
dvdt

=
∫ T

0

∫ t

0
E

[
L1

ve
−∫ v

0

(
L2

u+L1
u+ru

)
du−ξ 2(v,t)L2

v−a2
vξ 2(v,t)〈A1(0, 1, 0, 0, v, t)1,Xv〉

]
dvdt

=
∫ T

0

∫ t

0
E

[
L1

ve
−∫ v

0

(
L2

u+L1
u+ru

)
du−ξ 2(v,t)L2

v 〈U2(v, t)(A1(0, 1, 0, 0, v, t)1),Xv〉
]
dvdt

=
∫ T

0

∫ t

0
e−ξ 1(0,v)L1

0−ξ 2(0,t)L2
0

〈(
e−δ1vL1

0A1(1, 1, 0, ξ 2(v, t), 0, v
)

−A1
2(1, 1, 0, ξ 2(v, t), 0, v))U2(v, t)(A1(0, 1, 0, 0, v, t)1),X0

〉
dvdt, (4.5)

where the second equality follows from Proposition 3.4, and the last equality is a direct
consequence of Corollary 3.1.

Now we turn to compute the expected discounted loss payment. From Proposition 3.3,
we have

E
[
e− ∫ τ2

0 rsds1{τ2≤T }
]

= −E

[∫ T

0
e−∫ t

0 rsdsdP
(
τ2 > t |�X

t ∨�L
t

)]

= −E

[∫ T

0
e−∫ t

0 rsdsdP
(
τ1 > t, τ2 > t |�X

t ∨�L
t

)]

−E

[∫ T

0
e−∫ t

0 rsdsdP
(
τ2 > t, τ1 ≤ t |�X

t ∨�L
t

)]

= E

[∫ T

0

∫ t

0
L1

ve
−∫ t

0 rudu−∫ v
0 L1

udu−∫ t
0 L2

udu−a2
v ξ 2(v,t)

(
L2

t + a2
ve

−δ2(t−v)
)

dvdt

]

+E

[∫ T

0
L2

t e
−∫ t

0

(
rs+L1

s+L2
s

)
dsdt

]
.= T1 + T2.

An application of Corollary 3.1 yields

T2 =
∫ T

0
e−ξ 1(0,t)L1

0−ξ 2(0,t)L2
0

〈(
e−δ2tL2

0A1(1, 1, 0, 0, 0, t)

−A2
2(1, 1, 0, 0, 0, t)

)
1,X0

〉
dt. (4.6)

It remains to calculate T1. Again using the “tower” property of conditional expectations
yields

T1 = E

[∫ T

0

∫ t

0
L1

ve
−∫ v

0

(
ru+L2

u+L1
u

)
du−a2

v ξ 2(v,t)

×E
[
e−∫ t

v

(
ru+L2

u

)
du

(
L2

t + a2
ve

−δ2(t−v)
)

|�L
v ∨�X

t

]
dvdt

]

=
∫ T

0

∫ t

0
E

[
L2

vL
1
ve

−∫ v
0 (ru+L2

u+L1
u)du−ξ 2(v,t)L2

v 〈e−δ2(t−v)U2(v, t)

×(A1(0, 1, 0, 0, v, t)1),Xv〉
]
dvdt +

∫ T

0

∫ t

0
E

[
L1

ve
−∫ v

0 (ru+L2
u+L1

u)du−ξ 2(v,t)L2
v

×
〈
e−δ2(t−v)C2(v, t)(A1(0, 1, 0, 0, v, t)1) − U2(v, t)A2

2(0, 1, 0, 0, v, t)1,Xv

〉
dvdt,
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where the second equality is obtained from Proposition 3.4 and Corollary 3.1. Then, again
using Corollary 3.1, we obtain

T1 =
∫ T

0

∫ t

0
e−ξ 1(0,v)L1

0−ξ 2(0,t)L2
0(〈(e−(δ1+δ2)vL1

0L
2
0A1(1, 1, 0, ξ 2(v, t), 0, v)

−e−δ1vL1
0A2

2(1, 1, 0, ξ 2(v, t), 0, v) − e−δ2vL2
0A1

2(1, 1, 0, ξ 2(v, t), 0, v)

+A12
3 (1, 1, 0, ξ 2(v, t), 0, v))e−δ2(t−v)U2(v, t)(A1(0, 1, 0, 0, v, t)1),X0〉

+〈(e−δ1vL1
0A1(1, 1, 0, ξ 2(v, t), 0, v) − A1

2(1, 1, 0, ξ 2(v, t), 0, v))

×(e−δ2(t−v)C2(v, t)(A1(0, 1, 0, 0, v, t)1)−U2(v, t)A2
2(0, 1, 0, 0, v, t)1),X0〉)dvdt.

(4.7)

Then equating the expected discounted loss payment with the expected discounted spread
payment gives the result.

Proposition 4.2 The fair spread of the CDS default risk of the protection seller is given by

κ1 = (1 − R)
∫ T

0 h4(t)dt∫ T

0 h1(t)dt
, (4.8)

where h1(t) and h4(t) are given in Proposition 4.1.

Proof The proof is similar to that of Proposition 4.1, so we just give an outline.
From Proposition 3.3, we can express the expected discounted spread payment as

κ1E

[∫ T

0
e−∫ t

0 rsds1{τ1∧τ2>t}dt

]
= κ1E

[∫ T

0
e−∫ t

0

(
rs+L1

s +L2
s

)
dsdt

]
.

The expected discounted loss payment is

E
[
e− ∫ τ2

0 rsds1{τ2≤T,τ2<τ1}
]

= E

[∫ T

0
e−∫ t

0 rudu1{τ1∧τ2>t−}dH 2
t

]

= E

[∫ T

0
e−∫ t

0 rudu1{τ1∧τ2>t}L2
t dt

]
= E

[∫ T

0
L2

t e
−∫ t

0 (rs+L1
s +L2

s )dsdt

]
,

where the second equality holds because H 2
t − ∫ t∧τ2

0 λ2
s ds is a martingale.

Then using Eqs. 4.4 and 4.6 and equating the expected discounted loss payment with the
expected discounted spread payment concludes the proof.

4.2 First- and Second-to-Default CDSs on Two Underlyings

A kth-to-default swap, which is a commonly traded product of portfolio credit derivatives,
is a bilateral contract between an insurance buyer and an insurance seller. The payment
streams of this derivative depend on the default times of an underlying portfolio of n credit-
risky assets. In this subsection, we evaluate the first- and second-to-default credit default
swap (CDS) spreads on two underlyings.

Denote by τ(1) = τ1 ∧ τ2 be the time of the first default. Denote by τ(2) = τ1 ∨ τ2 be the
time of the second default. Assume the default dependence structure of the two underlyings
is described by Eq. 2.3 in Section 2. Assume a unit notional and a constant recovery R. The
buyer of a first-to-default (second-to-default) CDS pays a continuous spread c1(c2) till the
first (second) default occurs or till the maturity T of the contract if no credit event occurs
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before the maturity, in order to cover the loss of the protection buyer in the event of the
credit event. Therefore, the fair spread of the kth-to-default swap ck, k = 1, 2 should satisfy

ckE

[∫ T

0
e−∫ t

0 rsds1{τ(k)>t}dt

]
= (1 − R)E

[
e− ∫ τ(k)

0 rsds1{τ(k)≤T }
]

. (4.9)

The following results give the explicit expressions for c1 and c2.

Proposition 4.3 The fair spread of the first-to-default swap on two underlyings is given by

c1 = (1 − R)
∫ T

0 (h4(t) + h5(t))dt∫ T

0 h1(t)dt
, (4.10)

where

h5(t) = e−ξ 1(0,t)L1
0−ξ 2(0,t)L2

0

〈(
e−δ1tL1

0A1(1, 1, 0, 0, 0, t) − A1
2(1, 1, 0, 0, 0, t)

)
1,X0

〉
,

h1(t) and h4(t) are given in Propositions 4.1.

Proof The expected discounted spread payment is

c1E

[∫ T

0
e−∫ t

0 rsds1{τ(1)>t}dt

]
= c1E

[∫ T

0
e−∫ t

0

(
rs+L1

s+L2
s

)
dsdt

]
.= c1I1,

where the expression for I1 is given by Eq. 4.5.
The expected discounted loss payment is

E

[
e− ∫ τ(1)

0 rsds1{τ(1)≤T }
]

= E

[∫ T

0

(
L1

t + L2
t

)
e−∫ t

0

(
rs+L1

s+L2
s

)
dsdt

]
.

Then making use of Corollary 3.1 yields

E

[
e− ∫ τ(1)

0 rsds1{τ(1)≤T }
]

=
∫ T

0
(h4(t) + h5(t))dt.

Therefore, Eq. 4.10 can be easily obtained from Eq. 4.9. The proof is finished.

Proposition 4.4 The fair spread of the second-to-default swap on two underlyings is given
by

c2 = (1 − R)
∫ T

0 (h3(t) + h7(t))dt∫ T

0 (h1(t) + h2(t) + h6(t))dt
, (4.11)

where

h6(t) =
∫ t

0
e−ξ 1(0,t)L1

0−ξ 2(0,v)L2
0 〈(e−δ2vL2

0A1(1, 1, ξ 1(v, t), 0, 0, v)

−A2
2(1, 1, ξ 1(v, t), 0, 0, v))U1(v, t)(A1(1, 0, 0, 0, v, t)1),X0〉dv.

h7(t) =
∫ t

0
e−ξ 1(0,t)L1

0−ξ 2(0,v)L2
0 (〈(e−(δ1+δ2)vL1

0L
2
0A1(1, 1, ξ 1(v, t), 0, 0, v)

−e−δ1vL1
0A2

2(1, 1, ξ 1(v, t), 0, 0, v) − e−δ2vL2
0A1

2(1, 1, ξ 1(v, t), 0, 0, v)

+A12
3 (1, 1, ξ 1(v, t), 0, 0, v))e−δ1(t−v)U1(v, t)(A1(1, 0, 0, 0, v, t)1),X0〉

+〈(e−δ2vL2
0A1(1, 1, ξ 1(v, t), 0, 0, v) − A2

2(1, 1, ξ 1(v, t), 0, 0, v))

×(e−δ1(t−v)C1(v, t)(A1(1, 0, 0, 0, v, t)1)−U1(v, t)A1
2(0, 1, 0, 0, v, t)1),X0〉)dv,
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with C1(v, t) = diag(a1)U1(v, t) and U1(v, t) = diag((e−a11ξ 1(v,s), · · · , e−a1Nξ 1(v,s))∗),
h1(t), h2(t) and h3(t) are given in Propositions 4.1.

Proof Dividing the event {τ2 > t} into three mutually disjoint events: {τ1 > t, τ2 > t},
{τ1 > t, τ2 ≤ t} and {τ1 ≤ t, τ2 > t}, then the expected discounted spread payment can be
expressed as

c2E

[∫ T

0
e−∫ t

0 rsds1{τ(2)>t}dt

]
= c2E

[∫ T

0
e−∫ t

0 rsds1{τ1>t,τ2>t}dt

]

+ c2E

[∫ T

0
e−∫ t

0 rsds1{τ1>t,τ2≤t}dt

]
+ c2E

[∫ T

0
e−∫ t

0 rsds1{τ1≤t,τ2>t}dt

]

= c2E

[∫ T

0

∫ t

0
L1

ve
−∫ t

0 rsds−∫ v
0 L1

udu−∫ t
0 L2

udu−a2
v ξ 2(v,t)dvdt

]

+ c2E

[∫ T

0

∫ t

0
L2

ve
−∫ t

0 rsds−∫ v
0 L2

udu−∫ t
0 L1

udu−a1
v ξ 1(v,t)dvdt

]

+ c2E

[∫ T

0
e−∫ t

0

(
rs+L1

s +L2
s

)
dsdt

]
.= c2(I1 + I3 + I2),

where the formulas for I1 and I2 are given by Eqs. 4.5 and (4.4), respectively.
Similar to deriving Eq. 4.5, we can obtain

I3 =
∫ T

0

∫ t

0
e−ξ 1(0,t)L1

0−ξ 2(0,v)L2
0 〈(e−δ2vL2

0A1(1, 1, ξ 1(v, t), 0, 0, v)

−A2
2(1, 1, ξ 1(v, t), 0, 0, v))U1(v, t)(A1(1, 0, 0, 0, v, t)1),X0〉dvdt.

Now we turn to compute the expected discounted loss payment. Using the “tower property”
of conditional expectations and Proposition 3.3, we have

E

[
e− ∫ τ(2)

0 rsds1{τ(2)≤T }
]

= −E

[∫ T

0
e−∫ t

0 rsdsdP
(
τ(2) > t |�X

t ∨�L
t

)]

= −E

[∫ T

0
e−∫ t

0 rsdsdP
(
τ1 > t, τ2 > t |�X

t ∨�L
t

)]

− E

[∫ T

0
e−∫ t

0 rsdsdP
(
τ1 > t, τ2 ≤ t |�X

t ∨�L
t

)]

− E

[∫ T

0
e−∫ t

0 rsdsdP
(
τ2 > t, τ1 ≤ t |�X

t ∨�L
t

)]

= E

[∫ T

0

∫ t

0
L1

ve
−∫ t

0 rsds−∫ v
0 L1

udu−∫ t
0 L2

udu−a2
vξ 2(v,t)

(
L2

t + a2
ve−δ2(t−v)

)
dvdt

]

+ E

[∫ T

0

∫ t

0
L2

ve
−∫ t

0 rsds−∫ v
0 L2

udu−∫ t
0 L1

udu−a1
vξ 1(v,t)

(
L1

t + a1
ve−δ1(t−v)

)
dvdt

]
.= T1 + T2,

where the expression for T1 is given by (4.7).



Methodol Comput Appl Probab

Similar to deriving (4.7), we have

T2 =
∫ T

0

∫ t

0
e−ξ 1(0,t)L1

0−ξ 2(0,v)L2
0 (〈(e−(δ1+δ2)vL1

0L
2
0A1(1, 1, ξ 1(v, t), 0, 0, v)

−e−δ1vL1
0A2

2(1, 1, ξ 1(v, t), 0, 0, v) − e−δ2vL2
0A1

2(1, 1, ξ 1(v, t), 0, 0, v)

+A12
3 (1, 1, ξ 1(v, t), 0, 0, v))e−δ1(t−v)U1(v, t)(A1(1, 0, 0, 0, v, t)1),X0〉

+〈(e−δ2vL2
0A1(1, 1, ξ 1(v, t), 0, 0, v) − A2

2(1, 1, ξ 1(v, t), 0, 0, v))

×(e−δ1(t−v)C1(v, t)(A1(1, 0, 0, 0, v, t)1)−U1(v, t)A1
2(0, 1, 0, 0, v, t)1),X0〉)dvdt.

Therefore, equating the expected discounted spread payment with the expected discounted
loss payment ends the proof.

5 Numerical Results

This section numerically investigates how the parameters influence the CDS spreads. For
ease of illustration, we consider N = 2, that is X switches between only two states, where
state e1 and state e2 represent a “good” macro-economic condition and a “bad” macro-
economic condition, respectively. Let T = 5, R = 0.4, r = (0.05,0.02)∗, δi = 10, L1

0 =
L2

0 = (0.01, 0.05)∗, a1 = a2 = (0.005,0.015)∗, ρ1 = ρ2 = (2, 6)∗,ρ3 = (1, 3)∗. The
densities f1 and f2 are given by f i1(x) = β1e

−β1x, x > 0, and f i2(x) = β2e
−β2x, x > 0,

with (β1, β2)
∗ = (200, 50)∗. Assume q11 = q22 = −q.

Figures 1 and 2 present the impact of the model parameters on the single-name CDS
spread without counterparty risk. In these figures, we see that the spread in the case with
the “good” economy at time t = 0 is much lower. We also see that a larger q results in a
larger spread if X0 = e1. This is because the probability of switching to the bad economy
increases as q increases. On the other hand, if we start at the “bad” economy, the spreads
decrease as q increases. This is mainly due to the increasing probability of switching to the
good economy. In Fig. 1, we see that the spread increases with the arrival rate of the shock

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160

180

200

q

κ(
bp

s)

X
0
=e

1
,ρ3=(1,3)

X
0
=e

2
,ρ3=(1,3)

X
0
=e

1
,ρ3=(2,6)

X
0
=e

2
,ρ3=(2,6)

Fig. 1 Relationship between κ and q for different ρ3



Methodol Comput Appl Probab

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

δi

κ(
bp

s)

X
0
=e

1
,β=(200,50)

X
0
=e

2
,β=(200,50)

X
0
=e

1
,β=(400,100)

X
0
=e

2
,β=(400,100)

Fig. 2 Relationship between κ and δi for different β, q = 0.3

events with other parameters being fixed. Since an increase in the arrival rate leads to a
higher frequency that the intensities jump upward, the default probability for the reference
entity increases. In Fig. 2, we observe that the impact of δi on the spread is very obvious with
a larger δi corresponding to a lower spread. This may be explained by the fact that the time
period that the default intensity goes back to the previous level of intensity immediately after
major events occur will be shorten as ai increases. We can also see the spread increases with
the jump amount of the shock events with other parameters being fixed, since an increase in
the jump amount leads to the increasing of the default intensity.

Figures 3 and 4 present the impact of the parameters on the single-name CDS spread
with counterparty risk. The curves in Figs. 3 and 4 are similar to those in Figs. 1 and 2.
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Figures 1 and 4 indicate that the spread with counterparty risk is lower than the one without
counterparty risk. This is consistent with the financial intuition.

Figures 5 and 6 present the impact of parameters on the CDS spread difference κ − κ1.
Figure 5 shows that the difference increases with q when X0 = e1, while it decreases with
q when X0 = e2. We also see that a larger κ − κ1 corresponds to a larger arrival rate. In
Fig. 6, we observe that the impact of the parameter δi on κ −κ1 is very obvious, and that the
difference decreases with δi . We can also see a larger κ − κ1 corresponds to a larger jump
amount.
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Figures 7, 8, 9 and 10 present the impact of the model parameters on the spreads of the
first and second-to-default basket swaps on two underlyings. The curves in Figs. 7–10 are
similar to those in Figs. 1–4. Comparing Figs. 7 and 8 with Figs. 1 and 2, we see that the
spread of the first-to-default basket swap is much higher than the single-name CDS spread.
This is in line with the stylized feature: the first-to-default swap spread written on a portfolio
of n reference names increases with n. Comparing Figs. 7 and 8 with Figs. 9 and 10, we can
observe the first-to-default CDS spread is much larger than the second-to-default spread,
also in line with stylized features.

We remark that since we focus on providing a theoretical pricing model, we just make
some numerical analysis without doing the calibration in this paper. One thing on our future
research agenda is to use the credit market CDS spreads to empirically test our model.
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Giesecke et al. (2011b) suggest there exist three regimes and obtain the transitional proba-
bility by making analysis on the corporate bond market over the course of the last 150 years.
Therefore, the generator of the Markov chain can be borrowed from Giesecke et al.
(2011b). The parameters θ may be obtained according to

θ = arg min
θ̂

∑
T ∈{T1,··· ,Tk }

(c(T , θ̂ ) − c(T ))2

c(T )2
,

where T1, · · · , Tk are different maturities and c(T ) is the CDS spread observed from the
market. We will use some good methods of parameter estimation to obtain the parameter
estimates in the future’s research.
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6 A Multi-dimensional Contagion Model

In this section, we extend the two-dimensional interacting intensities model Eq. 2.3 to a
multi-dimensional one.

Consider a group of m firms in the market. Denote τi to be the default time of the ith
firm. Assume that the default intensity of τi is given by

λi
t = Li

t +
m∑

j=1,j =i

ai
τj

e−δi (t−τj )1{τj ≤t}, i = 1, 2, · · · ,m, (6.1)

where ai
τj

= 〈
ai , Xτj

〉
for a constant vector ai = (ai1, · · · , aiN)∗ with ail > 0 for each

i = 1, 2, · · · , m, l = 1, · · · , N, and Li
t is a regime-switching shot noise process given by

Li
t = Li

0e
−δi t +

∫ t

0
e−δi(t−s)dJ i

s , i = 1, 2, · · · , m.

Here δ1, δ2, · · · , δm are positive constants; Li
0 = 〈

Li
0,X0

〉
, where Li

0 = (
Li1

0 , · · · , LiN
0

)∗

with Lil
0 > 0 for each i = 1, 2, · · · , m, l = 1, 2, · · · ,N; and J i

t = ∑Ni(t)+Nm+1(t)

j=1 Y i
j ,

where N1(t),N2(t), · · · ,Nm(t) and Nm+1(t) are mutually conditionally independent
regime-switching Poisson processes with intensities given by ρi(s) = 〈ρi , Xs〉 for con-
stant vectors ρi = (

ρ1
i , · · · , ρN

i

)∗
, i = 1, 2, · · · ,m + 1 with ρ

j
i > 0, for each i =

1, 2, · · · , m + 1, l = 1, · · · , N; Assume that given the path of the Markov chain X,

the sequences
{
Y 1

1 , Y 1
2 , · · · } ,

{
Y 2

1 , Y 2
2 , · · · } , · · · ,

{
Ym

1 , Ym
2 , · · · } are mutually independent

and independent of N1(t),N2(t), · · · , Nm+1(t). Furthermore, given the path of the Markov
chain X, we assume that for each i = 1, 2, · · · ,m the jump sizes Y i

j , j = 1, 2, · · · are

mutually independent and identically distributed with a common conditional density f i
t con-

centrated on (0,∞), where f i
t (.) = 〈fi (.),Xt 〉, with fi (.) = (f i1(.), · · · , f iN (.))∗. Then

the process
(
L1

t , L
2
t , · · · , Lm

t

)
is an m-dimensional regime-switching shot noise process

with common jumps.
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Denote the filtration by

�t = �X
t ∨�L

t ∨ �1
t ∨ �2

t ∨ · · · ∨ �m
t ,

where �L
t = �L1

t ∨ �L2

t ∨ · · · ∨ �Lm

t , and �i
t = σ

(
Hi

u : 0 ≤ u ≤ t
)
, with Hi

u =
1{τi≤u}, �Li

t = σ
(
Li

u : 0 ≤ u ≤ t
)
, i = 1, 2, · · · ,m.

Similar to the proof of Proposition 3.4, we can obtain the following result.

Proposition 6.1 For ci ≥ 0 and di > 0, i = 1, 2, · · · ,m, we have

E

⎡
⎣e

−∫ T
t

m∑
i=1

ciLi
sds−

m∑
i=1

diLi
T

XT |�X
t ∨�L

t

⎤
⎦

= e
−

m∑
i=1

(ci ξ i (t,T )+di e−δi (T −t))Li
t
〈
B1(c

1, · · · , cm, d1, · · · , dm, t, T ),Xt

〉
, (6.2)

where

ξ i(t, T ) = (1 − e−δi (T −t))/δi, i = 1, 2, · · · , m

and the matrix B1(c
1, · · · , cm, d1, · · · , dm, t, T ) solves

∂B1

∂t
+ (Q + diag(F̃t (c

1, · · · , cm, d1, · · · , dm))B1(c
1, · · · , cm, d1, · · · , dm, t, T ) = 0,

with boundary condition

B1(c
1, · · · , cm, d1, · · · , dm, T , T ) = I.

Here, I is an N × N identity matrix and F̃s is an N-dimensional vector with the j th
component given by

F̃
j
s (c1, · · · , cm, d1, · · · , dm) =

m∑
i=1

ρ
j
i

(
g

ij
s (ci, di) − 1

)
+ ρ

j

m+1

(
m∏

i=1

g
ij
s (ci, di) − 1

)
,

and

g
ij
s (ci, di) =

∫ ∞

0
e−(ciξ i (s,T )+di e−δi (T −s))xf ij (x)dx, i = 1, 2, · · · ,m, j = 1, · · · ,N.

Furthermore,

E

⎡
⎢⎣e

−∫ T
t

(
m∑

i=1
ciLi

s+rs

)
ds−

m∑
i=1

diLi
T |�X

t ∨�L
t

⎤
⎥⎦

= e
−

m∑
i=1

(ci ξ i (t,T )+di e−δi (T −t))Li
t 〈B1(c

1, · · · , cm, d1, · · · , dm, t, T )1,Xt 〉. (6.3)

Proof Since the proof is similar to the one of Proposition 3.4, we omit it.

In order to derive the joint survival probability P (τ1 > t1, τ2 > t2, · · · , τm > tm),

we follow the idea of change of measure adopted in Collin-Dufresne et al. (2004) and
Giesecke and Zhu (2013). For each i = 1, · · · , m, define the probability measures P i that is
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absolutely continuous with respect to P by Eq. 3.1, and define the probability measures
P 1,··· ,m by

dP 1,··· ,m

dP
|�t =

m∏
i=1

1{τi>t} exp

(∫ t

0
λi

sds

)
.=

m∏
i=1

ηi
t . (6.4)

Similar to the proofs of Propositions 3.1–3.2, we can show under P 1,··· ,m, the Markov chain
Xt and the jump process Li

t still have the same distributions as those under P.

Therefore, for any t ≥ 0, changing the measure from P to P 1,··· ,m yields

P (τ1 > t, τ2 > t, · · · , τm > t) = E1,··· ,m [
e−∫ t

0

(
L1

s +L2
s+···+Lm

s

)
ds

]

= e
−

m∑
i=1

ξ i(0,t)Li
0〈B1(1, · · · , 1, 0, · · · , 0, 0, t)1,X0〉,

where the last equality is obtained by using Proposition 6.1 and the fact that the distributions
of the Markov chain Xt and the jump process Li

t under P 1,··· ,m are the same as those under
P.

However, it is difficult to give the explicit expression for P (τ1 > t1, τ2 > t2, · · · , τm >

tm). One possible method may be to consider a relation between the (m − 1)-dimensional
conditional joint density and the m-dimensional conditional joint density. Since we can
obtain the two-dimensional conditional joint density for τ1 and τ2 from Proposition 3.3, the
three-dimensional conditional joint density for τ1, τ2 and τ3 can be derived by using the
idea of “change of measure.”

Here we only consider the case t1 ≤ t2 ≤ t3. For t1 ≤ t2 ≤ t3 and any event A ∈ �X
t3

∨�L
t3

,
using the “tower property” of conditional expectations yields

E
[
1{A}E

[
1{τ1>t1,τ2>t2,τ3>t3}|�X

t3
∨ �L

t3

]]
= E[1{τ1>t1,τ2>t2,τ3>t3}1{A}].

Then changing the measure from P to P 3 yields

E[1{τ1>t1,τ2>t2,τ3>t3}1{A}]
= E3

[
1{τ1>t1,τ2>t2}e

− ∫ t3
0 (L3

u+1{τ1≤u}a3
τ1

e−δ3(u−τ1)+1{τ2≤u}a3
τ2

e−δ3(u−τ2))du1{A}
]

.

Since under P 3, the default intensities of τ1 and τ2 are given by Eq. 2.3, we can obtain
E

[
1{τ1>t1,τ2>t2,τ3>t3}|�X

t3
∨ �L

t3

]
by using the two-dimensional conditional joint density of

τ1 and τ2. Therefore, the three-dimensional conditional joint density f
(
t1, t2, t3|�X

t3
∨ �L

t3

)
for t1 ≤ t2 ≤ t3 can be obtained by differentiating E[1{τ1>t1,τ2>t2,τ3>t3}|�X

t3
∨ �L

t3
] with

respect to t1, t2 and t3. In the future’s research, we shall investigate the relation between
the (m − 1)-dimensional conditional joint density and the m-dimensional conditional joint
density.

7 Conclusions

In this paper, extending Errais et al. (2010), we consider a two-dimensional regime-
switching affine jump intensity model to analyze a single-name CDS spread with and
without counterparty default risk, the first and second-to-default CDS spreads on two under-
lyings. Our model includes both self-excited and externally excited jumps. The default
dependence structure we construct stems from three sources. First, the intensities of the
two firms are both affected by a Markov chain describing macro-economy. Second, default
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dependence arises from common jumps in the intensities modeled by a regime-switching
compound Poisson process. Finally, inter-dependent default structure arises from default
contagion.

In order to obtain the CDS spreads, we follow the idea of “change of measure” to
solve the looping structure of default intensities. Therefore, under the survival measure, the
default intensity is modeled by a regime-switching shot-noise process, which is a special
case of a regime-switching affine jump diffusion process and can be well used to measure
the impact on the default intensity of exogenous shock events. We show the distributions
of the regime-switching shot noise processes under the new measures are the same as those
under the original measure. Furthermore, by using a martingale method, we obtain the joint
Laplace transform of the regime-switching shot noise processes. Based on these results, the
single-name CDS spreads with and without counterparty default risk, the first- and second-
to-default CDS spreads on two underlyings can be represented in terms of fundamental
matrix solutions of linear, matrix-valued, ordinary differential equations. Two things on our
future research agenda are to empirically test our model using statistical data from CDS
markets and to apply our model to calculate unilateral credit adjustment valuation for a CDS
contract.
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Appendix

Proof of Proposition 3.1

Proof Since Mt is an RN -valued martingale under P, it suffices to prove that Mtη
i
t is an

�−martingale under P. From Itô’s formula, we have

Mtη
i
t = M0 +

∫ t

0
ηi

s−dMs +
∫ t

0
Ms−dηi

s +
∑
s≤t

�Ms�ηi
s .

Since Mt and ηi
t are both �−martingales under P, it remains to show the last term van-

ishes. Note that, given �ηi
s = 0 at s = τi, the summation in the last term above will be

zero provided that �Mτi
= 0, a.s.. In fact, P (�Mt = 0) = P (�Xt = 0) = 0 for any

fixed time t > 0. And from the definition of τi given by τi = min{t > 0 : ∫ t

0 λi
sds ≥ Ei},

we have P (�Xτi
= 0) = E[E[1{�Xτi

=0}|Xs]] = E

[
E

[
∞∑

j=1
1{τi=Tj }|Xs

]]
, where

0 < T1 < T2 < · · · denote the transition times of X. Since E

[
∞∑

j=1
1{τi=Tj }|Xs

]
=

E

[
∞∑

j=1
1{∫ Tj

0 λi
sds=Ei}

|Xs

]
= 0, then �Mτi

= �Xτi
= 0, a.s. The proof is completed.
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Proof of Proposition 3.2

Proof The proof of Proposition 3.2 is similar to the one of Proposition 3.1.
We shall prove that Ni(t)η

i
t and Mi(t)η

i
t are both �−martingales under P. From Itô’s

formula, we have

Ni(t)η
i
t = Ni(0) +

∫ t

0
ηi

s−dNi(s) +
∫ t

0
Ni(s−)dηi

s +
∑
s≤t

�Ni(s)�ηi
s,

and

Mi(t)η
i
t = Mi(0) +

∫ t

0
ηi

s−dMi(s) +
∫ t

0
Mi(s−)dηi

s +
∑
s≤t

�Mi(s)�ηi
s.

Since Ni(t),Mi(t) and ηi
t are all �−martingales under P, it remains to show �Ni(τi) =

0,�Mi(τi) = 0, a.s.. In fact,

P (�Ni(τi) =0)=P (�Ni(τi) =0)=E[E[1{�Ni(τi )=0}|Xs]]=E

⎡
⎣E

⎡
⎣ ∞∑

j=1

1{τi=Tj }|Xs

⎤
⎦

⎤
⎦ ,

and

P (�Mi(τi) = 0) = P (�J i
τi

= 0)=E
[
E

[
1{�Ji

τi
=0}|Xs

]]
= E

⎡
⎣E

⎡
⎣ ∞∑

j=1

1{τi=Tj }|Xs

⎤
⎦

⎤
⎦ ,

where 0 < T1 < T2 < · · · denote the jump times of Ni. Since E

[
∞∑

j=1
1{τi=Tj }|Xs

]
=

E

⎡
⎣ ∞∑

j=1
1{∫ Tj

0 λi
sds=Ei

}|Xs

⎤
⎦ = 0, then �Ni(τi ) = 0,�Mi(τi) = 0, a.s.. The proof is

completed.

Proof of Proposition 3.3

Proof For any event A ∈ �X
s ∨�L

s , using the “tower property” of conditional expectations
yields

E
[
1{A}E

[
1{τ1>s,τ2>s}|�X

s ∨�L
s

]]
= E[1{τ1>s,τ2>s}1{A}].

Then changing the measure from P to P 1 yields

E[1{τ1>s,τ2>s}1{A}] = E
[
1{τ2>s}η1

s e
−∫ s

0 λ1
udu1{A}

]

= E1
[
1{τ2>s}e−∫ s

0 L1
udu1{A}

]

= E1
[
E1

[
1{τ2>s}|�X

s ∨�L
s

]
e−∫ s

0 L1
udu1{A}

]

= E1
[
e−∫ s

0

(
L1

u+L2
u

)
du1{A}

]
= E

[
e−∫ s

0

(
L1

u+L2
u

)
du1{A}

]
,

where the last second equality holds because τ2 has the intensity L2
t under measure P 1,

and the last equality holds because the distributions of Li
t and Xt under measure P 1 are the

same as those under P. The proof of Eq. 3.2 is finished.
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The proof of Eq. 3.3 is similar. For any event A ∈ �X
s ∨�L

s ,

E
[
E

[
1{τ1>s,t<τ2≤s}|�X

s ∨�L
s

]
1{A}

]

= E[1{τ1>s,t<τ2≤s}1{A}] = E

[
η1

s 1{t<τ2≤s}e−∫ s
0 (L1

u+1{τ2≤u}a1
τ2

e−δ1(u−τ2))du1{A}
]

= E1
[
1{t<τ2≤s}e−∫ s

0 L1
udu−a1

τ2
ξ 1(τ2,s)1{A}

]

= E1
[
E1

[
1{t<τ2≤s}e−∫ s

0 L1
udu−a1

τ2
ξ 1(τ2,s)|�X

T ∨�L
T

]
1{A}

]

= E1
[∫ s

t

L2
ve

−∫ v
0 L2

udu−a1
v ξ 1(v,s)−∫ s

0 L1
ududv1{A}

]

= E

[∫ s

t

L2
ve

−∫ v
0 L2

udu−a1
v ξ 1(v,s)−∫ s

0 L1
ududv1{A}

]
,

where the last second equality holds because τ2 has the intensity L2
t under measure P 1,

and the last equality holds because the distributions of Li
t and Xt under measure P 1 are the

same as those under P. The proof of Eq. 3.3 is finished.
The proof of Eq. 3.4 is similar to the one of Eq. 3.3, so we omit it.
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